Co to jest kaskada krzepnięcia?
The kaskada krzepnięcia odnosi się do procesów krzepnięcia, które prowadzą do hemostazy. Istnieje kilka modeli kaskady krzepnięcia: model wewnętrzny, model zewnętrzny i model koagulacji komórkowej.
Proces koagulacji prowadzący do hemostazy obejmuje złożoną liczbę reakcji obejmujących około 30 różnych białek.
Reakcje te przekształcają fibrynogen, rozpuszczalne białko, w nierozpuszczalne nici fibrynowe. Ten pierwiastek wraz z płytkami krwi tworzy stabilną skrzeplinę.
Kaskada krzepnięcia wtórnej hemostazy ma dwa główne szlaki prowadzące do tworzenia fibryny.
Są to szlaki aktywacji kontaktowej (model wewnętrzny) i szlak czynnika tkankowego (model zewnętrzny); oba prowadzą do tych samych podstawowych reakcji, które wytwarzają fibrynę.
Wiadomo, że główną drogą inicjacji krzepnięcia krwi jest model zewnętrzny. Modele te są serią reakcji, w których zymogen proteazy serynowej i jego czynnik glikoproteinowy są aktywowane, aby stać się aktywnymi składnikami w katalizie następnej reakcji kaskady.
Proces ten kończy się wzajemnie powiązaną fibryną. Czynniki krzepnięcia są na ogół proteazami serynowymi, które przylegają do mocy strumienia; krążą jako nieaktywne zymogeny.
Kaskada krzepnięcia jest podzielona na trzy ścieżki: model zewnętrzny i model wewnętrzny aktywują model komórek krzepnięcia czynnika X, trombiny i fibryny.
Proces kaskady krzepnięcia
Każdy ze związków w kaskadzie krzepnięcia nazywany jest czynnikiem. Czynniki krzepnięcia są zwykle wskazywane cyframi rzymskimi, zwykle zgodnie z kolejnością, w jakiej zostały odkryte małą literą, aby wskazać ich aktywną formę.
Zewnętrzny model ścieżki
Główną rolą modelu czynnika tkankowego jest wygenerowanie „eksplozji trombiny”, procesu, w którym trombina (najważniejszy składnik kaskady krzepnięcia pod względem jej roli aktywacji sprzężenia zwrotnego) jest uwalniana bardzo szybko. FVlla krąży w większej ilości niż jakikolwiek inny czynnik krzepnięcia.
Ten proces obejmuje następujące kroki:
- Po uszkodzeniu naczynia krwionośnego FVII opuszcza krążenie i wchodzi w kontakt z czynnikiem tkankowym (TF) wyrażanym w komórkach zawierających czynnik tkankowy. Komórki te obejmują leukocyty i fibroblasty zrębu i tworzą aktywowany kompleks TF-FVlla.
- TF-FVlla aktywuje FIX i FX.
- Ten sam FVII jest aktywowany przez trombinę. FXla, FXlla i FXa.
- Aktywacja FX (w celu utworzenia FXa) przez TF-FVlla jest prawie natychmiast niehamowana przez inhibitor czynnika tkankowego (TFPI).
- FXa i jego kofaktor FVa tworzą kompleks proto-kinazy, który aktywuje protrombinę w trombinie.
- Następnie trombina aktywuje inne składniki kaskady krzepnięcia, w tym FV i FVIII, i aktywuje i uwalnia FVIII, tak że nie wiąże się z vWF..
- FVlla jest kofaktorem FIXa i razem tworzą kompleks tenasa. To aktywuje efekt FX i cykl jest kontynuowany.
Model ścieżki wewnętrznej
Szlak wewnętrzny jest inicjowany po skontaktowaniu się z krwią i odsłonięciu ujemnie naładowanej powierzchni.
Ta aktywacja kontaktu rozpoczyna się od utworzenia podstawowego kompleksu kolagenowego przez HMWK (dla jego akronimu w języku angielskim) lub kininogenu o wysokiej masie cząsteczkowej, czynnika Fletchera i czynnika krzepnięcia XII.
Czynnik Fletchera jest przekształcany w kalikreinę, a czynnik krzepnięcia XII staje się FXlla. FXlla przekształca FXI w Fxla. Czynnik Xla aktywuje FIX wraz z jego kofaktorem FVlla, tworząc kompleks tenazy. Ten czynnik z kolei aktywuje FX do FXa.
W rzeczywistości rola aktywacji kontaktowej w tworzeniu skrzepów jest niewielka. Można to wykazać przez fakt, że pacjenci z ciężkim niedoborem FXII, HMWK i czynnikiem Fletchera nie mają zaburzeń krzepnięcia.
Zamiast tego system aktywacji kontaktowej wydaje się być bardziej zaangażowany w stan zapalny i odporność wrodzoną. Mimo to zakłócenie szlaku może zapewnić ochronę przed zakrzepicą bez znacznego ryzyka krwawienia.
Ostateczny model koagulacji
Podział koagulacji na dwa modele jest głównie sztuczny, pochodzący z badań laboratoryjnych, w których czas krzepnięcia jest mierzony po rozpoczęciu krzepnięcia przez szkło (model wewnętrzny) lub tromboplastynę (mieszanina czynnika tkankowego i fosfolipidy).
W rzeczywistości trombina jest nawet obecna na początku, ponieważ płytki wytwarzają korek. Trombina ma szerokie spektrum funkcji, nie tylko w przekształcaniu fibrynogenu w fibrynę, która jest budulcem hemostatycznej zatyczki.
Ponadto trombina jest najważniejszym aktywatorem płytek krwi, a także aktywuje czynniki VIII i V oraz jego hamujące białko C (w obecności trombomoduliny); aktywuje także czynnik XIII, który tworzy wiązania kowalencyjne, które łączą polimery fibrynowe, które powstają z aktywowanych monomerów.
Po aktywacji czynnika kontaktowego lub czynnika tkankowego kaskada krzepnięcia jest utrzymywana w stanie protombotycznym przez ciągłą aktywację FVIII i FIX w celu utworzenia kompleksu tenazy, dopóki nie zostanie uregulowana przez czynniki antykoagulacyjne..
Kofaktory wodospadu
Aby kaskada krzepnięcia funkcjonowała prawidłowo, wymaganych jest kilka substancji. Obejmują one:
- Wapń i fosfolipidy są wymagane do funkcjonowania kompleksów tenazy i protrombinazy.
- Witamina K, niezbędny czynnik wątrobowej karboksylazy gamma-glutamylowej, która dodaje grupę karboksylową do reszt kwasu glutaminowego w czynnikach II, VII, IX i X, jak również białka S, C i Z.
Regulatory wodospadu
Istnieje pięć mechanizmów, które utrzymują aktywację płytek krwi i regulują kaskadę krzepnięcia. Nieprawidłowości mogą prowadzić do większej tendencji do zakrzepicy.
- Białko C, świetny fizjologiczny antykoagulant.
- Antytrombina, inhibitor serpiny, który rozkłada trombinę, FIXa, FXa, FXla i FXlla.
- Inhibitor szlaku czynnika tkankowego, który ogranicza działanie czynnika tkankowego.
- Plazmina przylega do fibryny w produktach degradacji fibryny, które hamują tworzenie nadmiaru fibryny.
- Prostacyklina, która hamuje uwalnianie granulek prowadząca do aktywacji dodatkowych płytek krwi i kaskady krzepnięcia.
Referencje
- Koagulacja. Źródło z wikipedia.org
- Kaskada krzepnięcia Intrisec. Źródło z themedicalbiochemistrypage.org
- Kaskada krzepnięcia. Pobrane z thrombosisadviser.com
Kaskady krzepnięcia w krzepnięciu krwi. Źródło z themedicalbiochemistrypage.org.